Comprehensive Analysis of Transcript Start Sites in Ly49 Genes Reveals an Unexpected Relationship with Gene Function and a Lack Of Upstream Promoters
نویسندگان
چکیده
Comprehensive analysis of the transcription start sites of the Ly49 genes of C57BL/6 mice using the oligo-capping 5'-RACE technique revealed that the genes encoding the "missing self" inhibitory receptors, Ly49A, C, G, and I, were transcribed from multiple broad regions in exon 1, in the intron1/exon2 region, and upstream of exon -1b. Ly49E was also transcribed in this manner, and uniquely showed a transcriptional shift from exon1 to exon 2 when NK cells were activated in vitro with IL2. Remarkably, a large proportion of Ly49E transcripts was then initiated from downstream of the translational start codon. By contrast, the genes encoding Ly49B and Q in myeloid cells, the activating Ly49D and H receptors in NK cells, and Ly49F in activated T cells, were predominantly transcribed from a conserved site in a pyrimidine-rich region upstream of exon 1. An ∼200 bp fragment from upstream of the Ly49B start site displayed tissue-specific promoter activity in dendritic cell lines, but the corresponding upstream fragments from all other Ly49 genes lacked detectable tissue-specific promoter activity. In particular, none displayed any significant activity in a newly developed adult NK cell line that expressed multiple Ly49 receptors. Similarly, no promoter activity could be found in fragments upstream of intron1/exon2. Collectively, these findings reveal a previously unrecognized relationship between the pattern of transcription and the expression/function of Ly49 receptors, and indicate that transcription of the Ly49 genes expressed in lymphoid cells is achieved in a manner that does not require classical upstream promoters.
منابع مشابه
Conservation of Transcription Start Sites within Genes across a Bacterial Genus
Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA...
متن کاملP-227: Functional Analysis of The I.a,I.b, I.c and I.d (PII) Promoters of CYP19 (aromatase) Gene in Granulosa Cells of Polycystic Ovaries Patients and The Role of Letrozole and Antisensearom on CYP19 Gene Expression Inhibition
Background: The key enzyme of estrogen biosynthesis, aromatase cytochrome P450,is encoded by the CYP19 gene.CYP19 plays an important role in the development,function,an regulation of the female reproduction cycle. Thus, it is the potential candidate gene affecting fertility performance in human. CYP19 transcripts are expressed mainly in the ovary,testes,breast,adipose tissue and brain. Tissue e...
متن کاملTranscription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis.
The sigA and sigB genes of Mycobacterium tuberculosis encode two sigma 70-like sigma factors of RNA polymerase. While transcription of the sigA gene is growth rate independent, sigB transcription is increased during entry into stationary phase. The sigA gene transcription is unresponsive to environmental stress but that of sigB is very responsive, more so in stationary-phase growth than in log-...
متن کاملTranscript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens
The transcript levels of six defense genes including pathogenesis-related gene 1 (PR-1), pathogenesis-related gene 2 (PR-2), pathogenesis-related gene 5 (PR-5), lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL) and catalase (CAT) were investigated in tomato plants inoculated with Xanthomonas axonopodis pv. phaseoli as a non-host pathogen and X. euvesicatoria as a host pathogen. Activation o...
متن کاملDevelopmentally regulated internal transcription initiation during meiosis in budding yeast
Sporulation of budding yeast is a developmental process in which cells undergo meiosis to generate stress-resistant progeny. The dynamic nature of the budding yeast meiotic transcriptome has been well established by a number of genome-wide studies. Here we develop an analysis pipeline to systematically identify novel transcription start sites that reside internal to a gene. Application of this ...
متن کامل